Impaired retinal differentiation and maintenance in zebrafish laminin mutants.
نویسندگان
چکیده
PURPOSE To characterize morphologic and physiological alterations in the retina of three laminin mutant zebrafish, bashful (bal, lama1), grumpy (gup, lamb1), and sleepy (sly, lamc1), which were identified in forward genetic screens and were found to be impaired in visual functions. METHODS Mutant larvae were observed for defects in visual behavior by testing their optokinetic response (OKR). In addition, electroretinograms (ERG) were measured and retinal morphology was examined by standard histology, immunocytochemistry, TUNEL assay, and electron microscopy. RESULTS Both, gup and sly showed no OKR at any light intensity tested, whereas bal embryos showed some remaining OKR behavior at more than 40% of contrast. Consistent with the OKR result, gup and sly did not show an ERG response at any light intensity tested, whereas bal mutants exhibited small a- and b-waves at high light intensities. All three laminin mutants showed altered ganglion cell layers, optic nerve fasciculations, and lens defects. Again, bal showed the least severe morphologic phenotype with no additional defects. In contrast, both, gup and sly, showed severe photoreceptor outer segment shortening and synapse alteration (floating ribbons) as well as increased cell death. CONCLUSIONS Lamb1 and lamc1 chains play an important role in the morphogenesis of photoreceptors and their synapses. In contrast, lama1 is not involved in outer retina development.
منابع مشابه
Histopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles
The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...
متن کاملHistopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles
The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...
متن کاملZebrafish mutants identify an essential role for laminins in notochord formation.
Basement membranes are thought to be essential for organ formation, providing the scaffold on which individual cells organize to form complex tissues. Laminins are integral components of basement membranes. To understand the development of a simple vertebrate organ, we have used positional cloning to characterize grumpy and sleepy, two zebrafish loci known to control notochord formation, and fi...
متن کاملLaminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells
Objective(s):The application of stem cells holds great promises in cell transplants. Considering the lack of optimal in vitro model for hepatogenic differentiation, this study was designed to examine the effects of laminin matrix on the improvement of in vitro differentiation of human bone marrow mesenchymal stem cells (hBM-MSC) into the more functional hepatocyte-like cells. Materials and Met...
متن کاملFormation of the zebrafish midbrain–hindbrain boundary constriction requires laminin-dependent basal constriction
The midbrain-hindbrain boundary (MHB) is a highly conserved fold in the vertebrate embryonic brain. We have termed the deepest point of this fold the MHB constriction (MHBC) and have begun to define the mechanisms by which it develops. In the zebrafish, the MHBC is formed soon after neural tube closure, concomitant with inflation of the brain ventricles. The MHBC is unusual, as it forms by bend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 48 6 شماره
صفحات -
تاریخ انتشار 2007